Pipeline Commissioning






Pipeline commissioning means introducing crude/ product/Gas in the pipeline from originating station, filling the entire length and then start delivering to receipt system. 


Critical issues in commissioning a Petroleum Pipeline

  • Movement of hydrocarbon in empty pipeline can generate static current
  • Hydrocarbon Vapor mixed with oxygen may lead to explosion.
  • There may be formation of Air / Vapor pocket that may get compressed leading to rise in pressure.
  • Air / vapor pocket may explode in receiving tank leading to damage of the tank roof seal.
  • Leakage of any hydrocarbon may lead to fire or damage to environment . 
Source : http://petrofed.winwinhosting.net/upload/15-18June11/13.pdf
https://www.youtube.com/watch?feature=player_embedded&v=QAnzYVrsvBQ

Pipe Flange

There are different types of pipe flanges  used in the piping systems depending upon the fluid, PT rating, material of construction, connecting equipment etc.  Below are the types of flanges used in piping based on facing
Source : http://www.piping-engineering.com/pipe-flanges-types-systems.html

1) Flat Face (FF) Flanges:

These pipe flanges are used when the counter flanges are flat face. They are mainly used at connection to cast iron equipment, valves and specialties. This flat face flange has a gasket surface in the same plane as the bolting circle face.
Flange flat face FF
Flange flat face FF

2) Raised Face (RF) Flanges:

These pipe flanges are the most commonly used flanges. The raised face thickness for 150# and 300# are included in the specified flange thickness and for higher rating they are not included in the flange thickness.
Flange raised face (RF)
Flange raised face (RF)

3) Male-Female (M/F) Face Flanges:

These pipe flanges are better version of Raised face flanges.
Flange male female MF
Flange male female (MF)

4) Tongue-Groove (T/G) Face Flanges:

These pipe flanges are most reliable type of flange joint but are costlier than the other type of flanges.
Flange tongue groove joint (TG)
Flange tongue groove joint (TG)

5) Ring Type Joint (RTJ) Flanges:

These pipe flanges are most reliable type of flange joint but are costlier than the other type of flanges. The Ring Type Joint flanges are generally used in high pressure (Class 600 and higher rating) and/or high temperature services above 800°F (427°C).


Flange ring joint (RG)
Flange ring joint (RG)

Pipeline Crossing

Where two pipelines have to cross over each other there is a need to provide some protection to the pipeline crossing. There are several ways which this can be achieved. Protection is mostly provided at crossings by laying small pieces of rock to form a bridge over the bottom pipeline which in turn is covered by rock. This method is undertaken using a rock placement vessel, as seen in the picture to the right.
These specialist vessels are capable of laying the rock in exactly the correct location, direct from the surface. Stone mattresses may also be used in conjunction with rock placement, as seen in the image below.
Source : http://fishsafe.eu/en/offshore-structures/pipelines.aspx

Pipeline crossing
Pipeline crossing 2

Pipeline Bottom Roughness Analysis

What’s is bottom roughness?It’s an analysis to predict the location of span along subsea pipeline after installation or during operation. So, what’s the different between free span analysis?free span analysis is “only” determine the maximum allowable length of pipeline that unsupported when laid on seabed. The criteria of allowable span is divided into VIV(Vortex Induced Vibration) and ULS (Ultimate Limit State or Static Criteria). Why bottom roughness analysis is so important?Without bottom roughness analysis you don’t know how many support (sand bag, grout bag, etc) that you need to rectify of over span. However, it’s only prediction, so you need further inspection to ensure the location of over span.
Picture4
2D OBR analysis is very simple, you can use any FEA softwere such as ABAQUS, ANSYS, etc..For this note, I used ABAQUS FEA as mny OBR simulator. The pipeline can be modelled using 1D element (PIPE31H) and the seabed can be modeled using anlaytical rigid of surface. The common step that used for Bottom Roughness is adopted from Subsea Pipelines & Riser book (2005,Yong Bai & Qiang Bai)
Picture5
After ODB file is produced from your ABAQUS FEA machine, for the next step you need to extract COORD1 (coordinate of pipeline KP), COORD3 (water depth of your Bottom of Pipe [BOP]), and CPRESS (Contact pressure as indicator only to make sure each node of pipeline BOP is touching seabed or not). You can use python file or extract manually using Abaqus Viewer.
  1. Open your ODB file (double click you ODB file or open using Abaqus Viewer). On the left side you will see the tree and 2 X click the step you want to extract.
  2. Create Path. On the menu bar, please click Tools>Path>Create and you type your path name, click OK then you will face “Edit Node List Path” and please fill Node Labels you want to extract the value, for example 1:7399 (it means node 1 to node 7399).
  3. Create XY Data. Click Tools>XY Data>Manager. Please see picture below for easy explanation. Each of your XY data shall be copied in Microsoft Excel. Please check any bug/error with your output result.
ABAQUS_extracting
Before you try process further with your excel spreadsheet, you must interpolate your water depth of seabed (that has been inputed in abaqus) against your COORD1 data (coordinate of pipeline KP), then you will get new water depth of seabed with same KP with your COORD1 data. Divide your Excel spreadsheet into 2 Sheets.
In the sheet no.1 you need to set your sheet as a sample below. You will see any number span start & span end along the pipeline. Please make sure during pipeline embedded (negative value of span gap) there are any value of CPRESS and vice verse. The maximum gap value along pipeline must be inputted into allowable free span analysis (onset/screening/fatigue criteria as per DNV RP F105)
Picture1
After that, you have to “sort & filter” each span start & span end, then copy this KP into sheet no.2 as a picture below. From each this formula you will get the overspan results. Please notice that this screening will used maximum gap value along KP start and KP end.  The minimum span gap value that influence VIV, is 30% OD (Ref: OTC No. 4455, 1983, The Influence of Boundary Layer Velocity Gradients and Bed Proximity On Vortex Shedding from Free Spanning Pipeline). Some people used 20% OD (Ref: Sumer and Fredsoe, 1989, Hydrodynamiccs around Cylindrical Structures) as conservatism result
Picture2
The analysis has not over yet. First, you need to check with centre third of pipeline criteria. If the average center third of pipeline below allowable gap value, you can ignored this over span if it is caused by VIV only (not ULS/Static criteria). But if, you want get the conservatism result, you can consider this span is over span (But it will affect your span rectification cost). Second, you need to check the uplift possibility (or look like upheaval) in your ABAQUS FEA model. It should be not happened because the weight of pipeline and wave/current will forced this uplift section to drop on seabed as lateral buckling. So, if your over span is occur in this uplift section, please ignore it as a span, but you must check the integrity of this section (Using Load controlled Check & Displacement Control Check as per DNV F101). Third, you need to reassessed again each over span section with each gap value and recalculate again in allowable free span assessment, so you will get new allowable span that longer than before.
Your 2D Bottom Roughness Analysis is end from here. But if you want, you can do re-analysis (start form sheet-1) with interactivity phenomenon [during VIV, your span is will induced vibration with its neighbor span, so make this effective length is longer than isolated span]. As per DNV RP F105, you can determined each  span is a kind of isolated or interacting span as a diagram below.
Picture3
Source : Danar Yurindatama, " 2D Pipeline Bottom Roughness", January, 2013

Pipeline Free Span Mitigation

Pipeline Free Span Analysis and Mitigation


Nowadays, offshore pipelines have a significant role in development of oil and gas industry in different parts of the world. This crucial industry is laid on seabed by various methods either embedded in a trench (buried method) or laid on uneven seabed (unburied method). Construction of unburied pipeline is the most common method for its rapid and economic performance. In this method, however, the pipelines are subjected to various lengths of free spanning throughout the route during its life time, which may threaten the pipelines safety. Free spanning in offshore pipelines mainly occurs as a consequence of uneven seabed and local scouring due to flow turbulence and instability; hence, with no doubt, free spanning occurrences for unburied pipelines are completely inevitable.

Fredsoe and Sumer (1997) assessed the role of free spans in unburied offshore pipelines. They acknowledged the previous studies and mentioned that resonance is the main problem for offshore pipelines laid on the free spanning. Pipelines resonance happens when the external load frequency as a result of vortex shedding becomes equal to the pipe Natural Frequency. This phenomenon may burst the pipe coating and may lead to develop more fatigue on the pipelines. Different design guidelines, e.g. DNV (1998) and ABS (2001), have accepted a less stringent approach and recommend the free spanning to be reduced to the allowable length to avoid fatigue damage. These guidelines proposed a simple formulation to calculate the first Natural Frequency based on the pipelines specifications and seabed conditions; however, all of the guidelines encourages using modal analysis at the final phase of design.
Choi (2000) studied the effect of axial forces on free spanning of offshore pipelines. The results indicated that the axial force has a significant influence on the first Natural Frequency of the pipe. In this research, the different seabed condition has been broken down into three main types and the general beam equation for the boundary conditions was analytically solved. He also compared his result with Lloyd’s approximate formula, which estimates the first Natural Frequency of the beam considering axial load effect. Xu et al. (1999) applied the modal analysis to incorporate the real seabed condition to assess pipelines fatigue and Natural Frequency (NF). Later, Bai (2001) approved Xu et al. (1999) approach and emphasis on applying the modal analysis to determine the allowable length of free span for offshore pipelines.
In practice, a considerable amount of works have been applied to determine the allowable free span length, however, there is still lack of knowledge in assessing the role of all effective parameters in determination of allowable free span length. The objective of this paper is two folds: (i) to assess the role of main effective parameters on Natural Frequency; and (ii) to present a simple formula for allowable free span length with accounting for the seabed condition. To do so, first the approaches of DNV (1998) and ABS guidelines are discussed and then the modal analysis is outlined to have a useful tool to assess the role of all involved parameters. Finally, a case study on the Qeshem pipelines is performed to evaluate the free span allowable length.

During pipeline routing evaluation, consideration has to be given to the shortest pipeline length, environment conservation, and smooth sea bottom to avoid excessive free spanning of the pipeline. If the free span cannot be avoided due to rough sea bottom topography, the excessive free span length must be corrected. Free spanning causes problems in both static and dynamic aspects. If the free span length is too long, the pipe will be over-stressed by the weight of the pipe plus its contents. The drag force due to near-bottom current also contributes to the static load.

To mitigate the static span problem, mid-span supports, such as mechanical legs or sand-cement bags/mattresses, can be used. Free spans are also subject to dynamic motions induced by current, which is referred to as a vortex induced vibration (VIV). The vibration starts when the vortex shedding frequency is close to the natural frequency of the pipe span. As the pipe natural frequency is increased, by reducing the span length, the VIV will be diminished and eliminated. Adding VIV suppression devices, such as strakes or hydrofoils, can also prevent the pipe from vibrating under certain conditions. The VIV is an issue even in the deepwater field since there exists severe near-bottom loop currents. To prevent static and dynamic spanning problems, a number of offshore pipeline spanning mitigation methods in Table 3 have been identified. Based on soil conditions, water depth, and span height from the seabed, the appropriate method should be selected. If the span off-bottom height is relatively low, say less than 1 m (3 ft), sand-cement bags or mattresses are recommended. If the span off-bottom height is greater than 1 m (3 ft), clamp-on supports with telescoping legs or auger screw legs are more practical.

References:
Bakhtiary, Abbas Yeganeh, Abbas Ghaheri, Reza Valipour. 2007. “Analysis of Offshore Pipeline Allowable Free Span Length”.
http://www.jylpipeline.com, January 2014.

Mechanical Connectors Subsea





Hydratight's Mechanical Connector (formerly known as MORGRIP™ mechanical pipe connector) replaces the need for the welding of topside and subsea piping and pipelines in oil and gas, and petrochemical applications.
Since the late 1980s Hydratight's Mechanical Connectors have provided proven leak-free service history for permanent usage, and can be used for all sizes and pressure ratings of carbon steel, stainless steel, duplex and super duplex  pipes, in critical and non-critical service.

Our innovative products benefit from:

  • Morgrip pipe connectorHotwork-free installation
  • 100% leak-free service history
  • Over 2500 connectors deployed to date
  • No need for full shutdowns
  • Metal graphite composite seal
  • External seal testing facility
  • Unique weld strength gripping mechanism
  • Removable and reusable
  • At least as strong as the pipe itself
  • Permanent or temporary solutions
  • Firesafe certified for topside applications
  • Enhanced performance and operation
  • High integrity solution
  • NACE compliant
  • Minimum connector design life of 30 years
  • Comprehensive third-party approvals, including DNV and ABS.
morgrip-accreditation-logos-2.gif
Hydratight's Mechanical Connectors are available in a variety of formats, including Flange Adaptor terminating a bare-pipe with a flange, and Coupling joining one bare-end pipe direct to another. All formats suit specific applications, whether for use on carbon steel, stainless steel, duplex, super duplex or other pipe materials.

Source : http://www.hydratight.com/en/products/mechanical-connectors

Pipe in Pipe

Pipe-in-Pipe New Design

Increasing demand for energy, matched with high commodity prices and advances in technology, are driving operators to extract whatever reserves remain in the challenging UK continental shelf. Therefore, the requirement to transfer these multi-phase products from often high-pressure/high-temperature (HP/HT) wells back onshore is an even more demanding prospect.
Up until now, the common belief in the industry was that pipe-in-pipe systems able to withstand environmental challenges such as corrosion, structural integrity, and thermal management, would be too costly and complex to apply to riser systems.

Tata Steel worked closely with supply partners to engineer, procure, and construct these assemblies to further develop this innovative technology as a cost-effective solution to flow assurance issues.

Need for insulation

HP/HT fields are technically more complex to develop because of the inherently higher energy in the well fluid and its multi-phase composition. Managing the extreme pressure and operating temperature must be based and evaluated on criteria such as corrosion, maintaining structural integrity, and thermal management.

One particular challenge is the management of pipeline shutdown. Less expensive solutions for managing the insulation of bends such as wet coatings, compromise overall shutdown times due to reduced thermal efficiency. Solutions, such as "self-draining" spools, present a significant design challenge that can be mitigated by the inclusion of pipe-in-pipe bends, enabling the same thermal integrity to be maintained in the whole line.
Tata Steel has previously implemented a solution for pipe-in-pipe bends for a North Sea development. Since then, new insulation techniques have been developed that give far superior insulation properties.

Risers, spools, and bends

The main challenge with the construction of pipe-in-pipe bends is how to pass the inner flowline bend into the outer casing pipe. It is important that pipe bends have a straight portion on the end to enable efficient welding to the next pipe section and this can present the insertion of one bend into the other.
The second construction challenge is efficient insulation. Wrapping or sheathing is simply not practical here as the insulation would occupy the annulus of the assembly and prevent the integration.

New insulation system


Drawing of the geometry of one pipe into another.

The system developed by Tata Steel overcomes these problems by deploying granular Nanogel insulation into the annulus of the pipe-in-pipe system. Nanogel is made by first forming a silica gel, then expelling the water from the silica matrix. The resulting material is granular with trapped nanopores of air, inhibiting heat transfer by conduction, convection, and radiation (with the inclusion of an opacifier).

The deployment of a novel polymeric bulkhead, cast directly into the annulus, provides a solid barrier to retain the insulation, which allows for the relative movement of the inner and outer bends. The polymer is a "syntactic" material, silicone rubber with glass microspheres dispersed through the matrix with high strength, flexibility, and thermal efficiency. The tangent ends of the inner and outer bends are held rigidly to ensure that the assembly tolerances achieved at manufacture are retained when the unit is transferred to the welding contractor for incorporation into the pipeline spool or riser.

In order for the insulation to be effectively deployed and provide the consistent thermal performance, the annular gap throughout the assembly must be uniform. It is important the manufacturing tolerances of the pipe and bends are closely controlled.

Steel pipe and bend manufacture

Together with Tata Steel, Eisenbau Krämer (EBK) and the pipe bending plant of Salzgitter Mannesmann Grobblech (SMGB) have developed a series of controls, including a process and measurement system, to ensure all bend dimensions are closely controlled and mating bends can be produced, matched, and paired to ensure the most accurate assembly is produced.
In respect to the process-related thinning in the extrados of the hot induction bends, the wall thickness for the inner and outer mother pipes was increased accordingly. To match precisely, the mother pipes have been manufactured with the same ID as the riser pipes.

16-in. clad bends being transferred to the quenching tank after austenitization at SMGB pipe bending mill.
EBK supplied Tata Steel with the mother pipe, which has material properties that allow formation through hot induction bending. The main material challenges are to ensure the mechanical properties are suitable after bending. Therefore, SMGB is taking responsibility for the chemical design of the pre-material. This also involves the consideration of a series of heat treatment and forming processes. EBK uses a multi-pass welding process and steel plate from premium mills in Europe. The manufacturing process at EBK generates pipe of the closest dimensional control through a series of cold forming and sizing operations such as external calibration.

At the SMGB pipe bending plant, the special mother pipes are bent by hot induction bending. Heat is applied through electrical induction to the mother pipe materials and the pipe is slowly formed to give the correct geometry. In most pipeline applications the critical dimensions are the positions and attitudes of the ends of the bends (center-to-end dimension) to maintain the overall geometry of the pipeline. However, with pipe-in-pipe bends it is important that the bend radius is also accurately controlled to ensure the two bends can be integrated. The precise dimensions after bending also need to be maintained following heat treatment. For the inner clad bends, a full-body quench and temper heat treatment is applied at the SMGB bending mill in order to guarantee homogenized material properties for the bends, to fulfill mechanical and corrosion requirements.

HP/HT material properties

Additional material complexities have to be overcome. Generally, in HP/HT lines there are challenges because of corrosion, low temperature toughness, and strength. These parameters require careful material selection to maintain the balance of properties from the outset through to bend production. Thermal stresses need to be managed as the loads are shared between inner and outer pipe. In addition, the insulation can lead to extremes of temperature being retained in the pipe materials during operation and shutdown that can form challenging conditions for conventional steel products.

Conclusion

HP/HT well environments present some of the most challenging and technologically demanding conditions for field developments, not least because the properties in each reserve offer significant challenges in terms of material selection and design.
Tata Steel and its supply partners have expanded capabilities further with the design and creation of cost-effective insulated pipe-in-pipe bends for risers and spools - an accomplishment previously considered too difficult.
Pipe-in-pipe bends, while challenging technologically, can lead to simplification of overall pipeline design and can give better pipeline performance in times of operation and shutdown.